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A single grid algorithm which constructs the value function and the optimal synthesis, based on a local quasi-differential 
approximations of the Hamilton-Jacobi equation, is considered. The optimal synthesis is generated by the method of extremal 
translation in the direction of generalized gradients. The quasi-convex approximation functions, for which it is possible to use a 
linear dependence of the space-time steps for correct interpolation of the nodal optimal control values, thus substantially reducing 
the amount of computation, simplifying the finite-difference formulae and permitting the use of simple operators involving 
constructions of the method of least squares, are investigated. © 1998 Elsevier Science Ltd. All rights reserved. 

We shall use the stability properties of the value function [1] and the principle of extremal translation 
[2] to construct the value function and the optimal synthesis in grid approximation schemes intended 
for the numerical solution of the Hamilton-Jacobi (H J) equations. The generalized solution of the HJ 
equation, the value function of the problem of optimal guaranteed control, is usually non-differentiable, 
and the optimal synthesis is discontinuous on switching surfaces. The development of the theory of HJ 
equations for minimax solutions [3, 4] and for viscosity solutions [5, 6] enables non-differentiable 
functions to be used. 

An algorithm for constructing the value function and optimal synthesis in a single grid scheme is 
described in [7, 8]. The values of the optimal control at grid nodes are constructed by the method of 
extremal translation [2, 9] in the direction of generalized gradients. The principle of extremal aiming 
in the direction of quasi-gradients defined by a Yosida-Moreau transformation has previously been 
discussed in [10]. 

In the general case, there are two constraints on grid approximation schemes for constructing the 
optimal synthesis. First, the correct finite-difference operator must be chosen. For instance, the correct 
operator for the guaranteed minimization problem is a minimax operator defined on local concave hulls, 
while the use of Lax-Friedrichs operators, operators with local convex or linear hulls, is problematic. 
Conversely, in the dual guaranteed maximization problem, a maximin operator defined on local convex 
hulls must be used. Second, unlike the problem of the convergence of approximation schemes with 
respect to the norm of the space of continuous functions, for which only a linear dependence of the 
space-time approximation steps is required, the approximation must be of higher order of smallness 
with respect to the space variables than the time variable. This is due to the fact that, for approximation 
schemes on space-time grids, the values of the value function, its generalized gradients and optimal 
controls are computed only at the grid nodes. However, the trajectories constructed might slip between 
the nodes, so that the values at intermediate points must be found by interpolation of the nodal values 
of the controls. Correct interpolation requires a "good" approximation not only of the value function, 
but also of  the surfaces of discontinuity of the gradients (in the generalized sense with respect to the 
norm of the space of continuously differentiable functions), and this is achieved in the general case by 
having a higher order of approximation in space than in time. 

Below we introduce the property of local quasi-convexity for the approximated functions, which relaxes 
the above constraints: the finite-difference formulae are greatly simplified and it is possible to use a 
linear dependence of the space-time steps. Simple approximation formulae of the method of least squares 
can be used to construct local linear hulls. The optimal control values are computed by the method of 
extremal translation in the direction of the gradients of linear functions. The values of the optimal 
controls at intermediate points are found by linear interpolation of the nodal values. We will show that 
this ensures that the approximation value function does not increase along the trajectory that is 
generated, and is therefore optimal. We consider the extension of the construction to the problem of 
guaranteed control with a discontinuous integral exponent. 
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1. T H E  P R O B L E M  OF THE O P T I M A L  G U A R A N T E E D  C O N T R O L  

We consider the problem of constructing the optimal guaranteed synthesis p = U*(t, x) in the 
dynamical system 

x = f ( t ,  x, p, q)=A(t, x)+B(t, x)p+C(t, x)q (1.1) 

t ~ T = [ 0 ,  0], x ~ R  n, p ~ P c R  P, q ~ Q c R  q 

for the terminal payoff functional 

J(x(.)) = c~(x(0)) (1.2) 

Here x is an n-dimensional vector of the system, p is the control action and q is a perturbation. The 
sets P and Q are convex compact sets. The functions A(t, x), B(t, x), C(t, x) are Lipschitz-continuous 
with constant L and have sublinear growth, ensuring continuity of the solutions. The payoff function 
x ---> o(x) satisfies the Lipschitz condition. 

The right-hand side of system (1.1) has a saddle point, which uniquely defines the Hamiltonian 
(t,x,s)--> H(t,x,s) 

n(t ,  x, s)=(s, A(t, x))+min(s,  B(t, x)p)+max(s, C(t, x)q) 
pEP qeQ 

(1.3) 

The problem is solved by constructing an optimal strategy (t, x) ---> U*(t, x) which realizes the value 
of the value function 

w(t., x.)  = rain max 6(x(O)) = max rain ~(y(O)) (1.4) 
O x(.)~X(t,.x,,U) V y(.)eY(t,,x,,V) 

The trajectories x(. ) andy( .  ) are defined as the limits of stepwise motion (broken Euler lines) [1], 
generated from the initial position (t.,x.) by strategiesp = U(t,x), and realizations q = q(t) or strategies 
q = V(t, x) and realizationsp = p(t) respectively. 

The value function w is Lipschitz-continuous and therefore differentiable almost everywhere. At points 
of differentiability, it satisfies the Bellman-Isaacs equation, a first-order partial differential equation 
of HJ type 

~w(t, x)+H t, x, x) O, (t, x ) ~ T × R  n at Tx( t ,  = (1.5) 

The determination of the value function w also involves satisfying the boundary condition 

w(0, x )=o (x ) ,  x~  R n (1.6) 

The main characteristics of the value function are its properties of stability [1], which ensure that the trajectories 
of the dynamical system (1.1) in its level sets (Lebesgue sets) survive--its graph is weakly invariant. The stability 
properties and boundary condition form necessary and sufficient conditions which the value function must satisfy. 

The stability properties can be expressed in compact form within the framework of non-smooth analysis. They 
are given in terms of the derivatives with respect to direction in [3, 4], which introduces the concept of a minimax 
(non-differentiable) solution of the I-IJ equation identical with the value function. An equivalent definition of the 
viscosity solution, formulated in terms of subdifferentials, is obtained in the framework of the theory of first-order 
partial differential equations in [5, 6], where theorems of the existence, uniqueness and well-posedness of the 
solutions are proved. 

We will give a definition of the generalized solution in terms of conjugate derivatives [11]. 

Definition. The Lipschitz-continuous function w is called a generalized (minimax) solution of the 
Cauchy problem for the HJ equation (1.5) if it satisfies boundary condition (1.6) and the pair of 
differential inequalities 

.~,r'inf su~((s, h)-a_w(t,  x)l(l, h)-H( t ,  x, s ) )~O (1.7) 

sui~ inf((s, h)-a+w(t, x)l(l, h)-H( t ,  x, s))<~O (1.8) 
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Inequality (1.7) expresses the property of u-stability, and (1.8) expresses the property of o-stability 
of the function w. At points of differentiability of the function w, inequalities (1.7) and (1.8) become 
the HJ equation (1.5). 

The constructions of straight lines and dual variables which appear in formulae (1.7) and (1.8) are 
used in the finite-difference operators to approximate the generalized solution of the HJ equation. 

We define the compact domain Gr ~ T x R ~, in which an approximation scheme for the HJ equation 
(1.5) is to be constructed, by an invariance condition: if (to, Xo) ~ G ,  then (t, Xo + (t - to)b) ~ Gr for all 
{t ~ T, I[ b II ~< r}. Here 

r >  K, K =  max ~f(t, x, p, q)lJ (1.9) 
(t,x,p,q)eG×P×Q 

is the maximum velocity of the system in the set G, which is strongly invariant with respect to the 
differential inclusion 

x. (t) ~ F(t, x(t)), F(X, y) = {f(~, y, p, q) : p ~ P, q ~ 12} 

2. OPTIMAL SYNTHESIS IN GRID SCHEMES 

We will construct an optimal control procedure (t, x) ---) U*(t,x) which solves the problem of minimizing 
the functional (1.2) using a finite-difference construction CU which is a direct consequence of the 
property of o-stability (1.8) 

u(x )=CU( t ,  A, u)(x)= min rain {AH(t,x, s ) + G ( y ) - ( s ,  y - x ) }  (2.1) 
y~O(x,g A) s~D*G(y) 

From the known approximation y ~ u(y) of the value function w, assigned at time t + A, (t + A, y) 
Dr, the operator CU constructs the approximation x --> o(x) at time t, (t, x) ~ Gr. 
In (2.1) the symboly_-~ G(y) denotes a local concave hully --> G(y) of the function y ~ u(y) in the 

closed neighbourhood O(x, rA) of the point x of radius rA. 
The set D*G(y) is a superdifferential of the function G 

O*G(y)={s~R":G(y)-G(y)<~(s, y-y), y~O(x, rA)}, y~(x, KA) 

assigned in the closed neighbourhood O(x, KA) of the point x of the radius KA, r > K. 
The operator CU can be represented as the minimax construction 

rain max G(y(t, x, A, p, q)) 
pep q~Q 

(2.2) 

computed on concave hulls y ~ G(y) and defined on elements of the Euler broken line y(t, x, A, p, q) 

y(t, x, A, p, q )=x+A(A( t ,  x)+B(t ,  x )p+C(t ,x)q)  (2.3) 

We will consider an idealized approximation scheme with finite-difference operator CU, in which we 
set the grid F only with respect to time 

F={to<t ,<. . .<t~ t=O }, A=t i+l -  h, i=0 ,  ! . . . . .  N - I  

We will assume that the values of the function u(t, x) approximating the value function w(t, x) are 
computed at all points (t, x) ~ Gr, t E F, that is 

u(O,x)=o(x) (2.4) 

u(t i, x)= CU(t i, A, u(ti+l, .))(x), (t i, x), (ti+ I, x ) ~ G , ,  i = 0  . . . . .  N - I  (2.5) 

We determine the optimal strategy values U* --- U*(t, x) with respect to the principle of extremal 
aiming in the direction of the generalized gradients--supergradients s* of the local concave hull G of 
the function u 

U'= U*(t, x)-arg min~s*, B(t, x)p) 
pGP I 

(2.6) 
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s*=s*(t, x, y')=arg rain {AH(t, x, s)+G(y*)-(s, y'-x)} 
seO*G(y*) 

(2.7) 

y* =y*(t, x)=arg .12nin rain {AH(t, x, s ) + G ( y ) - ( s ,  y - x ) }  (2.8) 
y~O(x, KA) seD*G(y) 

Note that in the single approximation scheme the values of the approximation function (AF) u(t, x) 
and the optimal strategy U*(t, x) are computed in parallel. 

We fix the initial position (to, x0). Consider the Euler broken line 

x(')= {x(t, t 0, x 0, U', q(')), t ~ F c~T} (2.9) 

generated by the strategy U* (2.6) and an arbitrary perturbation t ---) q(t) 

X ( f i +  I ) = X(t i + A)  = X(t  i) + A(A( t i ,  X(t  i )) + 

+B(ti, x(ti))U*+C(ti, x(ti))q(tl) ), ti, ti+ I El" ,  X ( t o ) = X  0 

The strategy U* ensures that along the trajectory x(.) (2.9) the values of the approximation function 
u(t, x) are non-increasing, from which the following theorem can be deduced [12]. 

Theorem 2.1. For arbitrary accuracy parameter e > 0, a division step A of F can be found such that 
for any initial position (to, Xo) ~ Dr and arbitrary perturbations t --) q(t), the trajectoryx(- ) (2.9) generated 
by the strategy U* (2.6) satisfies the inequalities 

~(x(O))<u(t o, Xo)+~, I w(t 0, Xo)-U(t o, xo)l<e (2.10) 

In practice, the approximation procedure (2.4), (2.5) need only be performed at the grid nodes of 
GR rather than at every point (t, x) ~ Gr .  If the grid GR is uniform and rectangular 

G R  = { (t ,  x )  E G r : tEF ,  x = (m~e I +... + mnen)h} (2.11) 

m i =0, ±1, +2 . . . . .  i=1 . . . . .  n 
i ei=(e ~ . . . . .  eT), e i=l ,  e l=O, i=1 . . . . .  n, i ¢ j  

The values of the AF u(t, yj) are computed only at grid nodes (t, yj) ~ GR. Its values at points of Gr 
are found by linear interpolation according to the given simplicial subdivision of f2 with vertices at the 
nodes of GR 

u(t, y)=~'.u(t, y/), (t, y ) ~ D  r, (t, y j )~GR,  y=Y.ot jy j ,  ~ j ~ 0 ,  Z ~ i = I  (2.12) 

Here and everywhere below the summation is taken fromj = 0 to j  = n. 
There are convergence theorems [13] for approximaUon" schemes with the linear interpolation1/2 (2.12) 

in the space of continuous functions. An estimate of the convergence is the square root CA of the 
division step A. 

It is rather more difficult to find the values of the optimal strategy U* (t, Yi) by interpolation, because 
linear interpolation is not usually suitable in the case of discontinuous strategies. Piecewise-constant 
(copying) interpolations are then used 

U*(t, y ) = U ' ( , ,  Yo), Ilyo-yll = rain Ily,-y~ (2.13) (t,)))EGR n I 

To ensure acceptable accuracy using copying interpolation, the discretization step in the phase space 
(h) must be smaller than the time step (A) 

h = [~(A)A, lim[~A = 0 (2.14) 
A J,0 

If condition (2.14) holds, the theorem on the optimality of the copying strategy (2.6), (2.13) applies. 

Theorem 2.2. For arbitrary accuracy parameter e > 0, a subdivision step A of the grid F can be found 
and grid GR (2.11) chosen with high discretization of the phase variables (2.14) for which, for any initial 
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position (to, Xo) ~ Dr and arbitrary perturbations t ~ q(t), the trajectory x(.) (2.9) generated by the 
imitation strategy U* (2.6), (2.13) satisfies inequalities (2.10). 

Condition (2.14) requires the use of huge grids GR and an enormous number of computations. 
We shall consider the possibility of using "normal" grids in which the discretization steps h and A 

are linearly related (~, is a fixed constant) 

h = yA (2.15) 

We introduce the following quasi-convexity condition. Suppose the AF u(t,y) is convex, apart from an 
infinitely small quantity p.A 1+°, b > 0, ta > 0 in regions of size vA, so that the following conditions hold 

Y.O~)u(t, xi)+pAJ+n>~u(t, Y.Ctjxj), O~j;nO, j=O,  1 . . . . .  n, Y.cxj=I (2.16) 

~xk-xt]<<.VA, x k, x t ~ R  n, k, l=O, 1 . . . . .  n; v=nY2y+2K 

In that case linear interpolation can be used to find the values U*(t, y:), in exactly the same way as 
the values of the AF u(t,y) (2.12) 

U*(t, y )=~.o~jU~,  O l = O * ( t ,  yj), y=~Ot jy j ,  o t j~O,  ~ o t j = l  (2.17) 
)=0 

We have the following optimality principle [7, 8] for trajectory (2.9) generated by the strategy U*(t, y) 
(2.17) with linear interpolation of the nodal values U*(t,y), computed by the principle of external aiming 
in the direction of supergradients (2.6). 

Lemma. The approximation function u(t, y) is non-increasing along motions x(- ) (2.9) 

u( t i, x(ti )) >->- u(ti+ I, x(ti+l ) ) - l lA  I+b - LwnY2 L~IA 2 (2.18) 

Proof. By virtue of the convexity relation (2.16), the Lipschitz-continuity of the function u(t,y) and the definition 
of the strategy U* (2.6), (2.17), there are inequalities which guarantee that relation (2.18) holds 

U(ti+l, X(ti+l))=U(ti+A, X(ti)+Af(ti,X(ti), U*, q(ti))= 

=u(ti+A, ~aj~j-A(~i'~lxjf(t i, xj, Uj, q(t i))- f( t  i, x(ti), U , q(ti))~ 
n 

<~ E Otju(ti +A, .~j)+ltlA I+b +Lwn~L'lcA 2 
j=0 

<~ u(t i, x( ti ) ) + laA I+b + Lwnk~ L~IA 2 

Here 

x(ti)=Y~ Otjx), (t i, x j ) e G R ,  a j ~ O ,  j = 0 ,  I . . . . .  n, 

~j = Xl +A(A(ti, xj)+B(t i, xj)lJ; +C(ti, xl)q(ti)) 

We also have the relation 

~o t j  =1 

[~k-~I~n/~ ' IA+A2K <~ vA, k, l=O, 1 ....  n 

It is clear from relation (2.18) that the strategy U*(t,y) (2.6), (2.17) is optimal. 

Theorem 2.3. For the divisions of F and "normal" linear grids GR (2.15), let the AF u(t, y) be 
quasiconvex: (2.16). Then for all initial positions (to, x0) and any perturbations z ~ q(z) the trajectory 
x(.) (2.9), generated by the strategy U* (2.16) with linearly interpolated nodal values (2.17), satisfies 
the inequalities 

o(x(O)) ~< U(to, Xo) + tp(A) 

q~(A) ~< (O - t o)(I.~ t' + Lwn)~LyA), li.m q~(A) = 0 
A,~O 

(2.19) 

IW(to, Xo)-U(to, Xo)l~ CA H 
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Having chosen the arbitrary number a > 0, we can find a step A for F and a "normal" linear grid GR 
(2.15) for which (2.10) holds. 

Remark. 2.1. The formulae in the finite-difference operator CU (2.1) for local convex hulls y -~ GO,) and 
superdifferentiais D*G(y) are considerably simpler in a "normal" grid with linearly-dependent discretization steps 
of the phase variables and time (2.15) 

CU(t, A, u)(x)=G(x)+A _n~n H(t, x, s) 
sGD G(x) 

G(x) = max{u(x), max((u(x+TAei)-(u(x-TAei))l 2}} 

D*G(x)=co{b,: k=l ..... 2n}, b, =(b~ ..... b~) 

b~ = ± O(x +_ ~aei)- Cfx) = + ufx ±y~e~)- 6(x) 
"ta "ta 

The principle of extremal aiming for the optimal strategy U* is applied using the simple formulae 

U* (t, rain{s*, x)p), s*(t, x)=arg rnin H(t, x, s) X) ~ al'g B(t, 
P~P~ seD*G(x) 

Remark 2.2. The quasi-convexity condition (2.16) gives an optimal strategy (2.6) on a "normal" grid with the 
simplest finite-difference operator LA, using local linear approximations from the method of least squares 

LA(t, A, u)tx)fuo+AH(t, x, c) 

u O = -~ ~.[u(y O + u(y I )+...+u(y M))], M = 2n, Yo = x, Yi = x :I: yAe i, i = I ..... n 

c=(c I ..... ca), c i =u(x+¥Aei)-u(x-TAei) i=I ..... n 
2yA 

U'(t ,  x)=arg rain(c, B(t, x)p) 
pep 

3. A D I F F E R E N T I A L  G A M E  W I T H  D I S C O U N T I N G  

We will consider a stationary control system in an infinite time interval [0, +oo) 

x = f ( x ,  p, q)=A(x)+B(x)p+C(x)q, x~R",  p ~ P c R  p, q ~ Q c R  q (3.1) 

Le tx ( .  ) = {x(t): t ~[0, + oo)} be a trajectory of system (3.1) generated by samples t --->p(t), t ~ q(t) 
of the parametersp and q. As a measure of the quality of the process (x( .) ,p( .  ), q(.  )) we use an integral 
functional with discounting coefficient k > 0 

+ o o  

J(x(.), p(.), q(.))= S e-X~g(x('c), p(x), q(x))dt (3.2) 
0 

The functions f ( .  ), g(.  ) in dynamical system (3.1) and integral functional (3.2) are continuous over 
the set.of variables, satisfy a Lipschitz condition with respect to the variable x with constant L and are 
bounded by the constant K. 

In problem (3.1), (3.2) the upper value function w ° is defined by the relation 

w°(x.) = rain max lira z(0) (3.3) 
U (x(.),z(.))eY(y,,U) 0-~** 

Here Y(yo, U) is the set of trajectories y(t) = (x(t), z(t)), t ~ [0, 0] of the expanded system 

k = f ( x ,  p, q), ~=e-Xtg(x, p, q) (3.4) 

which are generated by the positional strategyp = U(t,x) and arbitrary samples q = q(t) from the initial 
position y. 

y . = ( x , ,  z.), x ( 0 ) = x . ,  z(O)=z,=O 

We know [14, 15] that the value function x ---> w°(x) is H61der constant p, depending only on the 
Lipsehitz constant L and discounting coefficient L, and that the boundedness condition is satisfied over 
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the entire space R n with constant K/L. These conditions and stabili~ properties give necessary and 
sufficient conditions which must be satisfied by the value function w °. The stability properties can be 
expressed in infinitesimal form by the use of constructions of non-smooth analysis----derivative with 
respect to direction and conjugate derivatives. At points of differentiability of the value function w °, 
the corresponding differential inequalities become the stationary HJ equation 

-Z,w ° + H(x,  ~w ° I ~)x) = O, x ~ R n (3.5) 

The function H(x, s): R n × R n ~ R of Eq. (3,5) is the Hamiltonian of problem (3.1), (3.2) and is 
associated with the dynamics f(x,p, q) and the integral function g(x,p, q) by the relation 

H(x, s)=min m a~o{(S, f (x ,  p, q))+g(x, p, q)} = (3.6) 
p~P q Q 

=(s, A(x))+min max{(s, B(x)p+C(x)q)+g(x,  p, q)} 
p~P qeQ 

We will consider an ideal iterative procedure with the values of the iteration functions uia(x)(i = 
0 . . . . .  m), approximating the value function w°(x) assumed to be constructed at all points x ~ R n 

u°a(x)=O, uia(x)=CUS(uia-t)(x), i=O . . . . .  m, m=O/A,  x E R  n (3.7) 

CUS(u~ -l)(x) = .tnin xi_ j (x, y) 
y~O(x, KA) 

xi_t(x, y)= man {AH(x, e-Xas)+e-XaGi_l(y)-(e-Xas, y - x ) }  
s~D" (ai_l(y)) 

Here Gi_l(y ) is the local concave hull of the iteration function U/A(y), y ~ O(X, rA), r > K.._The set 
DGi-I(y) is the superdifferential of the local concave hull Gi-l(i = 0 . . . .  , m) at the pointy e O(x, KA). 

We will define the value of the positional control U* = U*(x) at each point x ~ It n according to the 
principle of extremal aiming in the direction of the supergradient s* of the local concave hull Gm of 
the iteration function u~' 

U*(x)=argH(x,  s*)=axg mini(s*, B(x)p)+maxl(s*, C(x)q)+g(x, p, q)}} (3.8) p~p ~ . q~Q i 

s* =s*(x, y*)=argx,n(x, y*), y*=y*(x)=arg ~in  xm(x, y) 
yEO(x, EA) 

The values of the iteration functions u'~ are "non-increasing" along the trajectoryx( • ) generated by 
the strategy U* (3.8) and the arbitrary perturbation z ~ q(x) 

x(.) = Ix(t, x o, U °, q(')), t ~ [0, +**)} 

x(ti+ I ) = x(t i) + A(A(x(t i)) + B(x(t i ))U* + C(x(t i ))q(t i )) 

(3.9) 

t o = 0 ,  t i + t = t i + A ,  x ( O ) = x o  

from which we obtain the following result. 

Theorem 3.1. For any accuracy e > 0, a step A and iteration m can be found for which, for any initial 
position x0 e R n and any perturbations t --> q(t), the trajectory x(.) (3.9) generated by the strategy U* 
(3.8) satisfies the inequalities 

J(x(.), U*, q(.)) < u'~ (x o ) + ~, I w ° (x o) - u'~ (x 0)1 < g (3.10) 

There is an analogous result for an approximation scheme with high-order discretization GS of the 
phase variables (2.14) 

GS = {x ~ Rn:x = (rote I +...+ mne~)h} 

and copying interpolation 
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U*cy)--u'<yo), Ilyo-yU= minlly:-y[ yj~GSn J 

of the strategy U* constructed at the nodes of GS by the method of extremal translation (3.8) on 
supergradients of the iteration function u'~. 

Theorem 3.2. For any accuracy e > 0, a step A, a grid GS with highly discretized phase variables (2.14), 
and an iteration m can be found for which, for any initial position x 0 ~ R n and arbitrary perturbations 
t ~ q(t), the trajectory x(.) (3.9) generated by the strategy U* (3.8) satisfies relations (3.10). 

If the quasi-convexity condition (2.16) is satisfied by the iteration functions u~ in grids GS with a 
"normal" linear dependence (2.15) of steps h and A, the trajectories x(.) generated by the strategy U* 
(3.8) with linearly interpolated nodal values U*(vj) can have optimal properties 

U*(y)=~.o~jU~, Uj =U (yj), y=Y.otjyj, o t j~0 ,  ~ a j = l  (3.11) 

Theorem 3.3. For "normal" linear grids GS, let the iteration functions u~(y) possess the quasi-convexity 
properties (2.16). Then for all initial positions x0 and any perturbations x ~ q(x), the trajectory x(. ) 
(3.9) generated by the strategy U* (3.8) with linearly-interpolated nodal values (3.11) satisfies the 
relations 

J(x(a), U*, q(.)) ~ u~(xo)+ a(~ta b + eCL-x)°a)+ tO~-Ie -xa ~< u'~(Xo)+ Ba ~,  0 = r ~  

Iw°(xo)-U~Z(xo)l<~ CA p/2, (1-2u5) ra ~< AP/2 

Fixing an arbitrary number  e > 0, we can find a step A, a "normal linear grid" GS (2.15) and an iteration 
m for which relations (3.10) hold. 
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